
Mellin - Barnes regularization, Borel summation and the Bender - Wu asymptotics for the

anharmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 L663

(http://iopscience.iop.org/0305-4470/31/38/002)

Download details:

IP Address: 171.66.16.102

The article was downloaded on 02/06/2010 at 07:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/38
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) L663–L670. Printed in the UK PII: S0305-4470(98)93313-3

LETTER TO THE EDITOR

Mellin–Barnes regularization, Borel summation and the
Bender–Wu asymptotics for the anharmonic oscillator

Victor Kowalenko† and Andrew A Rawlinson
School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 14 April 1998, in final form 23 July 1998

Abstract. We introduce the numerical technique of Mellin–Barnes integral regularization,
which can be used to evaluate both convergent and divergent series. The technique is shown
to be numerically equivalent to the corresponding results obtained by Borel summation. Both
techniques are then applied to the Bender–Wu formula, which represents an asymptotic expansion
for the energy levels of the anharmonic oscillator. We find that this formula is unable to give
accurate values for the ground-state energy, particularly when the coupling is greater than 0.1.
As a consequence, the inability of the Bender–Wu formula to yield exact values for the energy
level of the anharmonic oscillator cannot be attributed to its asymptotic nature.

Ever since its appearance, the question of how accurate is the Bender–Wu (BW) asymptotic
formula [1] in evaluating the energy levels of the anharmonic oscillator (AHO) has remained
unresolved. This question is, of course, extremely difficult to answer because it requires
evaluating divergent series. Therefore, calculating the energy levels of the AHO via the BW
formula requires new developments in evaluating divergent series. Such developments will
not only have important ramifications for mathematics, but also for physics where divergent
series often abound in the form of asymptotic expansions as the only known solutions.

Recently, Kowalenko and Taucher [2, 3] developed the remarkable numerical technique
of Mellin–Barnes (MB) integral regularization to study the complete asymptotic expansions
for the exponential series ofS3(a) =

∑∞
n=0 exp(−an3) and the Hurwitz zeta function. By

using this technique they found to arbitrary accuracy, in some cases as high as 63 significant
figures, that they couldexactify these functions in regions where the asymptotic expansions
were previously thought to be inapplicable. Exactification is the process of calculating
the truncated sum of a divergent series and evaluating the divergent remainder/tail of the
series such that when both entities are combined, they yield the exact value of the original
function. Thus, applying MB regularization to the smalla expansion forS3(a) they found
S3(10) to 15 decimal places. Greater accuracy could be attained, but at the expense of more
computer time. In view of the power of this technique, we aim to use it here to study the
BW asymptotic formula.

In their classic study of the AHO [1] BW derived an expansion for theKth energy level
of theMth AHO:

EK,M(λ) = K + 1
2 +

∞∑
n=1

AK,Mn λn. (1)
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For largen, theAK,MN were given by a complicated expression, which for the special case
of the ground-state energy of thex4 oscillator (K = 0, M = 2) reduced to

A0,2
n ∼ −(−3)n

√
6π−3/20

(
n+ 1

2

)[
1− 95

72n
+O

(
1

n2

)]
. (2)

Although we are only concerned with equation (2), the techniques used here can be applied
to the more general expression forAK,Mn in [1].

Here, we aim to investigate the numerical accuracy of equation (2) when it is introduced
into equation (1), which is called the BW asymptotic formula. We shall carry out this study
by truncating the series given by equation (1) at a sufficiently large value ofn and then use
equation (2) to evaluate the remainder. Surprisingly, we shall see how the divergent series
from equation (2) for low values ofn can be used to accomplish this task. An important
consideration, therefore, is at what value ofn can equation (2) replace the actual values
of A0,2

n (An from here on) in equation (1). That is, for what values ofn can the largen
or as BW put it,n → ∞ limit be invoked. This is not so easy to answer because ifn is
equal to a huge number, say greater than 106, then the BW formula becomes almost useless
since it will require this number ofAK,Nn values to obtain the energy levels of the AHO.
In view of the rapid divergence of theAK,Mn it may not even be possible to evaluate the
truncated series for such large numbers ofn in a time-expedient manner even with the most
powerful computers. Thus, asn becomes too large, the BW asymptotic formula becomes
more and more impractical. On the other hand, selecting a value ofn that is too small
may invariably lead to unnecessary inaccuracy. Thus, we need to find a suitable value ofn

before continuing with our analysis.
BW arrived at equation (2) by assuming the wavefunctionψ(x) = e−x

2/4∑∞
n=0 λ

nBn(x),
where polynomialsBn(x) were given byBi(y) =

∑2i
j=1(−1)iy2jBi,j and x = √2y. By

introducing this form for the wavefunction into the time-independent Schrödinger equation,
they obtained a recursion relation for theBi,j with Ai = (−1)i+1Bi,1. Thus, they found
that A1 = 3

4, A2 = − 21
8 , A3 = 333

16 , etc. Then by studying the first 75 values of theAi ,
they observed that the ratioRn = |An+1/An| could be approximated by 3(n + 1

2), thereby
leading to equation (2). In figure 1 we present a graph off (n) = Rn/3(n+ 1

2) as a function
of n. Here, we see that forn > 15, f (n) < 1.01 and thatf (n) is very close to unity for
n > 25. Thus, we can interpret largen as being any value ofn greater than 15. According
to convention, the largern is, the more accurate the energy levels are expected to be with the
leading term, i.e. the first term in the square-bracketed expression of equation (2) dominating
all the remaining correction terms. This conjecture will be tested here.

The MB regularization is based on the application of Cauchy’s residue theorem to the
complex power series,

∑∞
k=N f (k)z

k, which gives

∞∑
k=N

f (k)(−z)k − (−1)N

2π i

∫
C

dt ztf (t)0(1+ t −N)0(N − t)

= (−1)N

2π i

∫ c+i∞

c−i∞
dt ztf (t)0(1+ t −N)0(N − t) (3)

where the contourC represents the arc closing the limits of the MB integral on the RHS of
equation (3). Kowalenkoet al [2] referred to the quantity on the LHS of equation (3) as
the regularizedpart of the power series whilec was an arbitrary real number, lying to the
left of the poles of0(N − t) and to the right of the poles off (t)0(1+ t −N).

Equation (3) is well suited for analysing both convergent and divergent series. For a
convergent series the arc integral vanishes whereas for an asymptotic series it is divergent,



Letter to the Editor L665

Figure 1. Rn/3(n+ 1
2) versusn.

effectively cancelling the infinite nature of the series. The definition is also equivalent
to the result one obtains by Borel summation of a divergent series. For example,
Borel summation of the geometric series,

∑∞
k=0(−z)k, yields 1/(1+ z), while evaluating∫ c+i∞

c−i∞ dt zt0(1+ t)0(−t) via Mathematica [4] yields the numerical values of 1/(1+ z)
except along the negative real axis, which represents a Stokes discontinuity [5], but is of
no consequence here.

We now consider the first two component series in the BW formula. That is, we define

S1(N, λ) =
√

6π−3/2
∞∑
n=N

(−1)n+1(3λ)n0(n+ 1
2) (4)

and

S2(N, λ) = 95

72

√
6

π3/2

∞∑
n=N

(−3λ)n

n
0

(
n+ 1

2

)
. (5)

From equation (3), the MB regularized versions for these series are

SMB
1 (N, λ) = (−1)N+1

2π i

√
6

π3/2

∫ c+i∞

c−i∞
dt (3λ)t0(1+ t −N)0(N − t)0

(
t + 1

2

)
(6)

and

SMB
2 (N, λ) = (−1)N

2π i

95

72

√
6

π3/2

∫ c+i∞

c−i∞
dt
(3λ)t

t
0(1+ t −N)0(N − t)0

(
t + 1

2

)
. (7)

To obtain the Borel summed version ofS1(1, λ) we replace0(n + 1
2) by its integral

representation and interchange the order of the summation and integration. The inner sum
is then written in terms of the geometric series, which is replaced by its Borel summed
value given earlier. Thus, one obtains

SB
1 (N, λ) = −

√
6(−3λ)N

π3/2

∫ ∞
0

dt
tN−1/2e−t

1+ 3λt
. (8)
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Table 1. Finite parts ofS1(1, λ) andS2(1, λ) for various coupling constants.

λ S1(1, λ) S2(1, λ)

0.01 0.011 204 966 2095−0.015 100 413 9564
0.10 0.084 921 110 1191−0.129 930 902 0491
1.00 0.318 451 509 3987−0.705 739 998 1761
10.0 0.571 981 805 0200−2.082 990 721 6246

The integral in equation (8) is one of Dingle’s two basic terminants [5]. It can also be
expressed in terms of the incomplete gamma function0(α, z) [6] as

SB
1 (N, λ) =

(−1)N+1

π

√
2

πλ
0

(
N + 1

2

)
0

(
1

2
−N, 1

3λ

)
e1/3λ. (9)

To obtain the Borel summed version ofS2(N, λ), n−1 is replaced by
∫ 1

0 dx xn−1 and then
the same approach forSB

1 (N, λ) can be used. Thus, one obtains

SB
2 (N, λ) =

95
√

6

72π3/2
(−3λ)N

∫ ∞
0

dx xN−1
∫ ∞

0
dt
tN−1/2e−t

1+ 3λxt
(10)

or in terms of0(α, z),

SB
2 (N, λ) =

95

72

(−1)N

π

√
2

πλ
0

(
N + 1

2

)∫ 1

0
dx x−3/2e1/3λx0

(
1

2
−N, 1

3λx

)
. (11)

In table 1 we present the values obtained for the series,S1(1, λ) andS2(1, λ), for different
values of the coupling constantλ. All of these values were obtained from the MB regularized
versions of the series and were also verified by using their Borel summed forms. The MB
regularized versions, equations (6) and (7), were evaluated by using the NIntegrate routine
from Mathematica, which was also used to evaluate the integrals in the Borel summed forms,
equations (8) and (10). Both approaches were relatively quick, but because Mathematica
can evaluate the incomplete gamma function directly, equation (9) was found to give the
greatest accuracy in the shortest amount of time forS1(1, λ). MB regularization becomes
superior when the Borel summed versions are given by multidimensional integrals such
as equation (10). Therefore, applying the NIntegrate routine to equation (7) was the most
expedient method for evaluatingS2(N, λ) for λ > 1.

As expected, the Borel summed versions ofS1(1, λ) andS2(1, λ) give identical results
to their corresponding regularized MB versions. An interesting feature in table 1 is the
third column, which shows that the correction term for the BW asymptotic formula can
be actually greater in magnitude than the leading term. Thus, one must be very careful
when handling O(1/n) corrections in an asymptotic expansion since each divergent series
is affected differently by the regularization process. As a consequence, a sufficiently large
truncation value will be required in order to ensure that the correction term is smaller than
the leading term.

To demonstrate that these results represent definite values forS1(1, λ) and S2(1, λ),
consider truncating each series afterN − 1 terms and then applying both techniques to
evaluate their tailsS1(N, λ) and S2(N, λ). These results will be required later when we
consider the largeN limit of the BW formula. If the results in table 1 do represent definite
values for each divergent series, then we should expect that irrespective of the value of
N , T1(N − 1, λ) + S1(N, λ) andT2(N − 1, λ) + S2(N, λ) should give the same values in
the table for all values of the coupling constant. Although we did this for all the coupling
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Table 2. Invariance ofS1(1, 0.1) indicating that the optimal point occurs atN = 6.

N T1(N − 1, 0.1) S1(N, 0.1)

1 0 0.084 921 110 119 119 3
2 0.116 954 520 185 051 4 −0.032 033 410 065 932 1
5 0.062 351 378 573 655 5 0.022 569 731 545 463 7

10 0.833 844 154 899 679 3 −0.748 923 044 780 560 0
15 −390.726 822 031 552 8 390.811 743 141 672 0
20 1.202 617 386 859 970× 106 −1.202 617 301 938 860× 106

25 −1.371 779 052 294 159 474 447 210× 1010 1.371 779 052 330 265 158 545 9122× 1010

Table 3. Invariance ofS1(1, 1) indicating the non-existence of an optimal point.

N T1(N − 1, 1)

1 0
5 −379.078 838 549 797 9

10 9.941 000 247 935 641 795 738 1× 108

15 −4.741 795 782 637 738 348 916 015 874 440× 1016

20 1.392 412 399 947 590 534 898 728 398 000 047 783 062× 1025

25 −1.543 426 785 503 756 553 743 895 880 970 595 099 040 197 935 053× 1034

S1(N, 1)

1 0.318 451 509 398 73
5 379.397 290 059 196 64

10 −9.941 000 244 751 126 701 750 7× 108

15 4.741 795 782 637 738 380 761 166 814 314× 1016

20 −1.392 412 399 947 590 534 898 728 366 154 896 843 18× 1025

25 1.543 426 785 503 756 553 743 895 880 970 595 130 885 348 874 927× 1034

Table 4. Invariance ofS2(1, 0.01). The optimal point was found nearN = 90.

N T2(N − 1, 0.01) S2(N, 0.01)

1 0 −0.015 100 413 9564
10 −0.015 100 413 9867 3.034 596 271 9591× 10−11

20 −0.015 100 413 9564 3.473 590 170 3704× 10−15

25 −0.015 100 413 9564−3.523 886 871 2374× 10−16

constants in table 1, we present here the results for the leading series withλ = 0.1 and
1.0 in tables 2 and 3 and for the correction term withλ = 0.01 and 10.0 in tables 4 and
5. In each instance the sum of the truncated series with the remainder evaluated by using
MB regularization and Borel summation yields the corresponding value in table 1. This
remarkable behaviour was first observed by Kowalenko and Taucher [3] in their study of
the complete asymptotic expansion for the Hurwitz zeta function.

From these tables we can observe several notable features of asymptotic series. For
small values of coupling, i.e.λ 6 0.1, the truncated series becomes smaller asN increases
until reaching an optimal value, at which point the truncated series begins to diverge. As the
size of the coupling increases, the value ofN at which the optimal point occurs decreases,
so much so that forλ > 0.5, there is no optimal point. In the past, an asymptotic series
would be deemed useless when there was no optimal point, but it can be seen that this is
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Table 5. Invariance ofS2(1, 10) indicating the non-existence of an optimal point.

N T2(N − 1, 10)

1 0
5 1.350 105 722 102 664 573 8× 106

10 −1.507 624 487 538 714 478 672 474 918 312× 1017

15 4.566 946 884 934 135 372 564 990 849 557 320 831 161 664× 1029

S2(N, 10)

1 −2.082 990 721 624 6
5 −1.350 107 805 093 386 198 4× 106

10 1.507 624 487 538 714 457 842 567 702 066× 1017

15 −4.566 946 884 934 135 372 564 990 849 578 150 738 377 910× 1029

not the case, provided the remainder is evaluated properly. Another interesting feature is
that as the truncated series begins to diverge, the remainder diverges in the opposite sense.
This remarkable property is in contrast to the standard Poincaré approach for asymptotic
series, which seeks to determine bounds for the remainder [7]. Finally, the results indicate
that each divergent series has a definite value, a notion first attributed to Euler [8].

Once the remainder begins to diverge, its evaluation becomes more difficult asN

continues to increase regardless of whether the Borel summed or the MB regularized versions
are used. For small values of the coupling, this occurs whenN passes the optimal point
while for large values of the coupling it occurs at very low values ofN . As mentioned
previously, using the form forS1(N, λ) given by equation (9) does not present any problems
because the incomplete gamma function has been programmed into Mathematica. In fact,
the asymptotics in [3] can also be employed in equation (9) to determine extremely accurate
results forS1(N, λ). The problem occurs when evaluating multidimensional Borel summed
versions such as equation (10). Even equation (11) becomes computationally difficult to
evaluate for largeN . However, we can exploit the fact that each series has a definite value
for each value of the coupling. For example, we can evaluate a divergent series forN = 1
by using the MB regularized version forS1(1, λ), which we have already indicated can be
obtained to very great accuracy efficiently, then calculate the truncated series afterN − 1
terms and finally subtract the latter result from the former, which will yield the remainder
S1(N, λ).

As a consequence of the above, we are now in a position to test the accuracy of the BW
formula for large values ofN . As mentioned earlier, we shall test the formula by truncating
the series in equation (1) for the ground-state energy of thex4 AHO afterN − 1 terms and
then adding to this result the remainder evaluated by using the BW formula. Specifically,
for the various values of the coupling in table 1 we aim to evaluate

EBW(N, λ) = 1
2 +

N−1∑
n=1

Anλ
n + S1(N, λ)+ S2(N, λ) (12)

where theAn are obtained from the recursion relation forBi,j [1]. The results obtained
from equation (12) usingN values ranging from 1 to 40 appear in rows 2–11 of table 6.
Columns 2–5 give the results for each coupling value considered earlier while the actual
values for the energy levels of thex4 AHO obtained from an in-house computer code appear
in the first row.

From table 6 it can be seen that irrespective of the value forN the results obtained
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Table 6. The ground-state energies for thex4 AHO and those generated by the BW formula.

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0

Exact 0.507 256 204 52 0.559 146 327 18 0.803 770 651 23 1.504 972 407 77
EBW(1, λ) 0.496 104 552 25 0.454 990 208 06 0.112 711 511 22 −1.011 008 916 60
EBW(2, λ) 0.507 340 599 42 0.567 350 679 79 1.236 316 228 48 10.225 038 255 9
EBW(5, λ) 0.507 256 251 37 0.561 355 634 75 35.558 048 606 1 363178.400 272 537 5
EBW(10, λ) 0.507 256 204 51 0.526 740 083 16 −4.567 061 325× 107 −4.768 735 554× 1016

EBW(15, λ) 0.507 256 204 52 6.269 211 394 03 7.177 876 641× 1014 7.371 195 946× 1028

EBW(20, λ) 0.507 256 204 52 −8218.281 147 9 −9.690 631 58× 1022 −9.869 288 98× 1041

EBW(25, λ) 0.507 256 204 52 5.493 040 025× 107 6.247 782 411× 1031 6.335 390 882× 1055

EBW(30, λ) 0.507 256 204 52 −1.169 324 54× 1012 −1.299 933 20× 1041 −1.314 680 50× 1070

EBW(35, λ) 0.507 256 204 52 6.331 251 336× 1016 6.927 320 677× 1050 6.993 363 069× 1084

EBW(40, λ) 0.507 256 204 52 −7.512 628 904× 1021 −8.123 973 72× 1060 −8.190 780 42× 1099

Table 7. S2/S1 ratios.

λ = 0.01 λ = 0.1 λ = 1.0 λ = 10.0

S2(1, λ)/S1(1, λ) −1.347 65 −1.530 02 −2.216 16 −3.641 71
S2(10, λ)/S1(10, λ) −0.134 842 −0.142 03 −0.145 928 −0.146 534
S2(20, λ)/S1(20, λ) −0.067 1841 −0.068 8741 −0.069 3764 −0.069 4375
S2(30, λ)/S1(30, λ) −0.044 6691 −0.045 3304 −0.045 4793 −0.045 4962
S2(40, λ)/S1(40, λ) −0.033 4338 −0.033 7615 −0.033 8243 −0.033 8311

from equation (12) are nowhere near the actual values for the ground-state energy of thex4

AHO except when the coupling is very small. As the coupling decreases, the optimal point
occurs at larger values forN and hence, the contributions fromS1(N, λ) andS2(N, λ) are
negligible. Thus, the contribution toEBW(N, λ) is determined primarily by the truncated
sum on the RHS of equation (12) for small coupling. However, if the value ofN in
equation (12) were chosen to be much larger than at the optimal point, then we would find
thatEBW(N, λ) would also be affected byS1(N, λ) andS2(N, λ) as for the larger values
of λ in table 6.

The results in table 6 show that asN increases,EBW(N, λ) continues to diverge from
the actual ground-state energies of the AHO, contrary to BW’s hypothesis that the formula
yields more accurate values for the energy levels asN increases. Our analysis has, therefore,
demonstrated that the BW formula is deficient, i.e. the leading- and first-order terms in
equation (2) cannot be used to obtain accurate values for the energy levels of the AHO in
the largen limit, especially for large values of the coupling.

In table 7 we evaluate the ratio ofS2(N, λ) to S1(N, λ) for the four values of coupling,
λ = 0.01, 0.1, 1.0 and 10.0 as a function ofN . Here we see that forN = 1 S2(N, λ) is
indeed much greater thanS1(N, λ), but for N > 1, the opposite applies, so much so that
for N = 40 the ratio ofS2(N, λ) to S1(N, λ) has decreased to 0.03 for all the values of
the coupling. Therefore, asN continues to increase, we expect that this correction term
will become increasingly small. Furthermore, from equations (1) and (2) the higher-order
correction terms in the BW formula are expected to go as

E(λ) = 1

2
−
√

6

π3/2

∞∑
n=1

0

(
n+ 1

2

)
(−3λ)n

(
1− 95

72n
+ b1

n2
+ b2

n3
+ · · ·

)
(13)

where thebi have yet to be determined. SinceS2(N, λ) corresponds to the 95/72n-term in
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equation (13), we expect the other terms to contribute even less whenN > 40. Then the
only way that the BW formula can yield accurate values for the energy levels of the AHO is
that thebi must diverge eventually. This would mean that the BW formula is useless since
the higher-order series would be more important than the lower-order series. Therefore, the
bi cannot diverge.

Even if thebi could be evaluated, the BW formula may still be unable to yield accurate
values for the AHO’s energy levels. This is because subdominant exponential terms have
been neglected. Although it has been claimed that such terms cannot be determined uniquely
[9], they can be obtained by using the asymptotic theory of hypergeometric functions as
described in [2] and references therein. Thus, these terms would need to be determined
if one aims to obtain the exact values for the AHO ground-state energy via the Rayleigh–
Schr̈odinger perturbation series of Bender and Wu.

To conclude, we have seen that the numerical approximation of the coefficients at large
order as carried out by Bender and Wu in [1] will not yield exact values for the AHO’s
ground-state energy even though the neglected higher-order series in the BW formula
become insignificant as the order increases. Studying the behaviour of an incomplete
Rayleigh–Schr̈odinger perturbation series for increasingn only worsens the situation. Hence,
a more rigorous analysis of the asymptotic behaviour rather than the simple numerical
matching of ratios of theAi as carried out by Bender and Wu is required. Finally, since the
AHO represents a test-bed for novel methods in quantum mechanics, those that solely yield
the BW asymptotic formula for the energy levels must also be regarded as questionable.

We thank Dr Lloyd Hollenberg of the School of Physics, University of Melbourne, for
informative discussions and for access to his AHO computer code. VK also acknowledges
the support of an Australian Research Fellowship. Finally, we thank Professor Angas Hurst
of the Department of Physics and Mathematical Physics, University of Adelaide for a critical
reading of this work.
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