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LETTER TO THE EDITOR

Mellin—Barnes regularization, Borel summation and the
Bender—Wu asymptotics for the anharmonic oscillator

Victor Kowalenkd and Andrew A Rawlinson
School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 14 April 1998, in final form 23 July 1998

Abstract. We introduce the numerical technique of Mellin—Barnes integral regularization,
which can be used to evaluate both convergent and divergent series. The technique is shown
to be numerically equivalent to the corresponding results obtained by Borel summation. Both
techniques are then applied to the Bender—Wu formula, which represents an asymptotic expansion
for the energy levels of the anharmonic oscillator. We find that this formula is unable to give
accurate values for the ground-state energy, particularly when the coupling is greaterlthan O
As a consequence, the inability of the Bender—Wu formula to yield exact values for the energy
level of the anharmonic oscillator cannot be attributed to its asymptotic nature.

Ever since its appearance, the question of how accurate is the Bender-Wu (BW) asymptotic
formula [1] in evaluating the energy levels of the anharmonic oscillator (AHO) has remained
unresolved. This question is, of course, extremely difficult to answer because it requires
evaluating divergent series. Therefore, calculating the energy levels of the AHO via the BW
formula requires new developments in evaluating divergent series. Such developments will
not only have important ramifications for mathematics, but also for physics where divergent
series often abound in the form of asymptotic expansions as the only known solutions.

Recently, Kowalenko and Taucher [2, 3] developed the remarkable numerical technique
of Mellin—Barnes (MB) integral regularization to study the complete asymptotic expansions
for the exponential series di(a) = > -, exp(—an®) and the Hurwitz zeta function. By
using this technique they found to arbitrary accuracy, in some cases as high as 63 significant
figures, that they couldxactifythese functions in regions where the asymptotic expansions
were previously thought to be inapplicable. Exactification is the process of calculating
the truncated sum of a divergent series and evaluating the divergent remainder/tail of the
series such that when both entities are combined, they yield the exact value of the original
function. Thus, applying MB regularization to the smalexpansion forSz(a) they found
S3(10) to 15 decimal places. Greater accuracy could be attained, but at the expense of more
computer time. In view of the power of this technigue, we aim to use it here to study the
BW asymptotic formula.

In their classic study of the AHO [1] BW derived an expansion for kite energy level
of the Mth AHO:

o0
ESMO) = K+ 3+ Ak, (1)
n=1
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For largen, the AI’S*M were given by a complicated expression, which for the special case
of the ground-state energy of thé oscillator K = 0, M = 2) reduced to

A2 ~ _(=3)"/6r%2T <n + %) [1 - % +0 (n—lz)} : @)

Although we are only concerned with equation (2), the techniques used here can be applied
to the more general expression faf-" in [1].

Here, we aim to investigate the numerical accuracy of equation (2) when it is introduced
into equation (1), which is called the BW asymptotic formula. We shall carry out this study
by truncating the series given by equation (1) at a sufficiently large valueaofl then use
equation (2) to evaluate the remainder. Surprisingly, we shall see how the divergent series
from equation (2) for low values of can be used to accomplish this task. An important
consideration, therefore, is at what valuemotan equation (2) replace the actual values
of A%2 (A, from here on) in equation (1). That is, for what valuesrotan the large:
or as BW put it,n — oo limit be invoked. This is not so easy to answer becauseif
equal to a huge number, say greater that flfen the BW formula becomes almost useless
since it will require this number ofiX*V values to obtain the energy levels of the AHO.

In view of the rapid divergence of thaX¥ it may not even be possible to evaluate the
truncated series for such large numbersa @fi a time-expedient manner even with the most
powerful computers. Thus, asbecomes too large, the BW asymptotic formula becomes
more and more impractical. On the other hand, selecting a valuetbét is too small
may invariably lead to unnecessary inaccuracy. Thus, we need to find a suitable value of
before continuing with our analysis.

BW arrived at equation (2) by assuming the wavefunctidn) = e /4 Yool oA By (x),
where polynomialsB,(x) were given byB;(y) = Zf":l(—l)"ysz,-,j andx = +/2y. By
introducing this form for the wavefunction into the time-independent &tihger equation,
they obtained a recursion relation for tiBg; with A; = (—=1)*1B; 1. Thus, they found
that Ay = 2, A, = —2&, A3 = 33, etc. Then by studying the first 75 values of thg
they observed that the rati®, = |A,11/A,| could be approximated by(3 + %), thereby
leading to equation (2). In figure 1 we present a grapif @f) = R, /3(n+ %) as a function
of n. Here, we see that for > 15, f(n) < 1.01 and thatf (n) is very close to unity for
n > 25. Thus, we can interpret largeas being any value of greater than 15. According
to convention, the larger is, the more accurate the energy levels are expected to be with the
leading term, i.e. the first term in the square-bracketed expression of equation (2) dominating
all the remaining correction terms. This conjecture will be tested here.

The MB regularization is based on the application of Cauchy’s residue theorem to the
complex power seriesy_- y f (k)z*, which gives

00 _1\N
Z F)(=2)F — %/ dt ' fF(OT A+t — N)O(N — 1)
=N I Jc

(_1)N c+ioo
= . / drz' f()I(L+1t— N)I'(N — 1) ()
27i c—i00
where the contou€ represents the arc closing the limits of the MB integral on the RHS of
equation (3). Kowalenket al [2] referred to the quantity on the LHS of equation (3) as
the regularized part of the power series while was an arbitrary real number, lying to the
left of the poles ofl’(N — ) and to the right of the poles of /)["(1 4+t — N).
Equation (3) is well suited for analysing both convergent and divergent series. For a

convergent series the arc integral vanishes whereas for an asymptotic series it is divergent,
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Figure 1. R,/3(n + ) versusn.

effectively cancelling the infinite nature of the series. The definition is also equivalent
to the result one obtains by Borel summation of a divergent series. For example,
Borel summation of the geometric seri€s,,- ,(—z), yields ¥/ (1 + z), while evaluating

ff,';o dr z’T'(1 + 1)I'(—1) via Mathematica [4] yields the numerical values of(1+ z)
except along the negative real axis, which represents a Stokes discontinuity [5], but is of
no consequence here.

We now consider the first two component series in the BW formula. That is, we define

S1(N.2) = Vor %2 " (—1)""(30)"T(n + 3) (4)
n=N
and
95 V6 X (—3))" 1
N, N =-—35 r = ). 5

S2(N, 1) 7279 24 (n+ ) (5)
From equation (3), the MB regularized versions for these series are
VB (_1)N+1 \/6 c+ioo 1
SN M) = — - dr BT +1=NIN =01+ (6)
and

(V95 V6 [t (3 1
SYB(N, &) = - d F(l+t—N)I(N — 1)l Z). 7
2 VW) =— "5 o d A+t =NITN =0T (143 7)

To obtain the Borel summed version §f(1, 1) we replacel’(n + %) by its integral
representation and interchange the order of the summation and integration. The inner sum
is then written in terms of the geometric series, which is replaced by its Borel summed
value given earlier. Thus, one obtains

\/é(_gA)N /OO ttN—l/Ze—t
0

B _
STV, 4) = == 35 1+ 3t

®)
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Table 1. Finite parts ofS1(1, A) and S2(1, A) for various coupling constants.

A S1(1, 1) S2(1, 1)

0.01 00112049662095—-0.0151004139564
0.10 00849211101191-0.1299309020491
1.00 03184515093987—-0.7057399981761
100 0.5719818050200—2.082990 721 6246

The integral in equation (8) is one of Dingle’s two basic terminants [5]. It can also be
expressed in terms of the incomplete gamma funcliém, z) [6] as

B _pt 2 Doy e
SB(N, ») = - “r N+2 r 5 N,B/\ e/, (9)

To obtain the Borel summed version §5(N, A), n~* is replaced byfoldxx”’l and then
the same approach f&# (N, 1) can be used. Thus, one obtains
956

B _ AN = o1 [
SPN. 3) = o5 (=31) /O dx x /O dr

(N-172g-1

- 10
1+ 3ixt (10)

or in terms ofl"(«, 2),

95(—1V [ 2 1\ [, 1 1
B(N, L) = — —T = / 2gl/3xp(Z N, — ). 11
SeNW =5yl \VF3) ) dex ¢ T (11)

In table 1 we present the values obtained for the sefigd, A) and S2(1, 1), for different
values of the coupling constakht All of these values were obtained from the MB regularized
versions of the series and were also verified by using their Borel summed forms. The MB
regularized versions, equations (6) and (7), were evaluated by using the Nintegrate routine
from Mathematica, which was also used to evaluate the integrals in the Borel summed forms,
equations (8) and (10). Both approaches were relatively quick, but because Mathematica
can evaluate the incomplete gamma function directly, equation (9) was found to give the
greatest accuracy in the shortest amount of timeSfd@f, ). MB regularization becomes
superior when the Borel summed versions are given by multidimensional integrals such
as equation (10). Therefore, applying the Nintegrate routine to equation (7) was the most
expedient method for evaluatingy(nN, 1) for » > 1.

As expected, the Borel summed versionsSofl, A) and S»(1, 1) give identical results
to their corresponding regularized MB versions. An interesting feature in table 1 is the
third column, which shows that the correction term for the BW asymptotic formula can
be actually greater in magnitude than the leading term. Thus, one must be very careful
when handling @1/n) corrections in an asymptotic expansion since each divergent series
is affected differently by the regularization process. As a consequence, a sufficiently large
truncation value will be required in order to ensure that the correction term is smaller than
the leading term.

To demonstrate that these results represent definite value$;fbri) and S»(1, 1),
consider truncating each series affér— 1 terms and then applying both techniques to
evaluate their tailsS; (N, A) and S2(N, o). These results will be required later when we
consider the larg&v limit of the BW formula. If the results in table 1 do represent definite
values for each divergent series, then we should expect that irrespective of the value of
N, Ti(N — 1, 1) + S1(N, 1) and To(N — 1, 1) + S2(N, 1) should give the same values in
the table for all values of the coupling constant. Although we did this for all the coupling
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Table 2. Invariance ofS1(1, 0.1) indicating that the optimal point occurs At = 6.

N Ty(N-101 S1(N,0.1)

1 0 00849211101191193

2 01169545201850514 —0.0320334100659321

5 00623513785736555 .022569 7315454637
10 08338441548996793 —0.748923 044 7805600
15 —390726 8220315528 398117431416720
20 120261738685997& 10° —1.202617 301938868 10°

25 —1.371779052 294 159 474 447 2%010'°  1.371 779052 330 265 158 545 9122100

Table 3. Invariance ofS1(1, 1) indicating the non-existence of an optimal point.

N Ti(N-11)

1 0
5 —3790788385497979
10 9941000247 935641 795 738410°
15 —4.741795782637 738348916 015 874 44006
20 1392412399947 590 534 898 728 398 000 047 783082%°
25 —1.543426785503 756 553 743 895 880 970 595 099 040 197 935 AH8*

S1(N, 1)

1 031845150939873
5 379397290059 196 64
10 —9.941000244 751126 701 7507108
15 4741795782637 738380761166 814 3140
20 —1.392412 399947 590 534 898 728 366 154 896 843 187>
25 1543426785503 756 553 743 895 880 970 595 130 885 348 874 4274

Table 4. Invariance ofSz(1, 0.01). The optimal point was found neaf = 90.

N T»(N—-1,001 S2(N, 0.01)

1 0 —0.015100413 9564
10 —0.0151004139867 .B34596271959% 10~11
20 —0.0151004139564 .3735901703704& 1015
25 —0.0151004139564—3.523 8868712374 10716

constants in table 1, we present here the results for the leading series witB.1 and
1.0 in tables 2 and 3 and for the correction term with= 0.01 and 1Q0 in tables 4 and
5. In each instance the sum of the truncated series with the remainder evaluated by using
MB regularization and Borel summation yields the corresponding value in table 1. This
remarkable behaviour was first observed by Kowalenko and Taucher [3] in their study of
the complete asymptotic expansion for the Hurwitz zeta function.

From these tables we can observe several notable features of asymptotic series. For
small values of coupling, i.e. < 0.1, the truncated series becomes smalleNagsicreases
until reaching an optimal value, at which point the truncated series begins to diverge. As the
size of the coupling increases, the valueNdfat which the optimal point occurs decreases,
so much so that fok > 0.5, there is no optimal point. In the past, an asymptotic series
would be deemed useless when there was no optimal point, but it can be seen that this is
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Table 5. Invariance ofS2(1, 10) indicating the non-existence of an optimal point.

N TN -1,10

1 0
5 1.350105722102664573810°
10 —1.5076244875387144786724749183220"7
15 4566 946 884 934 135372564 990 849 557 320 831 16 1-6687°

S2(N, 10

1 —2.0829907216246
5 —1.350107 805093 386 1984 10°
10 1507624 487538714457 842567 702 06607
15 —4.566 946 884 934 135372564 990 849 578 150 738 37%910%°

not the case, provided the remainder is evaluated properly. Another interesting feature is
that as the truncated series begins to diverge, the remainder diverges in the opposite sense.
This remarkable property is in contrast to the standard Pdnapproach for asymptotic
series, which seeks to determine bounds for the remainder [7]. Finally, the results indicate
that each divergent series has a definite value, a notion first attributed to Euler [8].

Once the remainder begins to diverge, its evaluation becomes more diffictt as
continues to increase regardless of whether the Borel summed or the MB regularized versions
are used. For small values of the coupling, this occurs whepasses the optimal point
while for large values of the coupling it occurs at very low valueshof As mentioned
previously, using the form fo$1 (N, 1) given by equation (9) does not present any problems
because the incomplete gamma function has been programmed into Mathematica. In fact,
the asymptotics in [3] can also be employed in equation (9) to determine extremely accurate
results forS1(N, o). The problem occurs when evaluating multidimensional Borel summed
versions such as equation (10). Even equation (11) becomes computationally difficult to
evaluate for largev. However, we can exploit the fact that each series has a definite value
for each value of the coupling. For example, we can evaluate a divergent serigs=fdr
by using the MB regularized version fot (1, 1), which we have already indicated can be
obtained to very great accuracy efficiently, then calculate the truncated serie®/ aftdr
terms and finally subtract the latter result from the former, which will yield the remainder
S1(N, A).

As a consequence of the above, we are now in a position to test the accuracy of the BW
formula for large values oV. As mentioned earlier, we shall test the formula by truncating
the series in equation (1) for the ground-state energy ok th&HO after N — 1 terms and
then adding to this result the remainder evaluated by using the BW formula. Specifically,
for the various values of the coupling in table 1 we aim to evaluate

N-1
Egw(N.2) =3+ Y A"+ S1(N. 1) + Sa(N. 2) (12)

n=1
where theA, are obtained from the recursion relation By; [1]. The results obtained
from equation (12) usingv values ranging from 1 to 40 appear in rows 2-11 of table 6.
Columns 2-5 give the results for each coupling value considered earlier while the actual
values for the energy levels of thé AHO obtained from an in-house computer code appear
in the first row.

From table 6 it can be seen that irrespective of the valueMdhe results obtained
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Table 6. The ground-state energies for th& AHO and those generated by the BW formula.

1 =0.01 r=01 r=1.0 =100

Exact 050725620452 35914632718 0377065123 504972407 77
Egw(1, A) 0.49610455225 @54 990208 06 1271151122 —1.011 008916 60
Esw(2, 1) 0.50734059942 6735067979 3631622848 1@25 0382559
Esw(5, 1) 0.50725625137 (36135563475 3558048 606 1 363178002725375
Epw(10,2) 0.50725620451 (52674008316 —4.567 061325« 10’ —4.768735554x 1016
Epw(15,1) 050725620452 £6921139403 177876641« 10  7.371195946¢ 10%8
Epw(20,1)  0.50725620452 —82182811479 —9.69063158x 10?2  —9.86928898x 10*

Esw(25,1) 050725620452  H93040025« 10’ 6.247782411x 1031 6.335390882« 10°°
Epw(30,2) 050725620452 —1.16932454x 1012 —1.29993320x 10*?  —1.31468050x 107°
Esw(35,%) 050725620452 B31251336¢ 1016 6927320677 10°°  6.993363069% 1084
Epw(40,2) 050725620452 —7.512628904x 10?1 —8.12397372x 10°0  —8.190 78042« 10°°

Table 7. S»/S; ratios.

A =0.01 A=01 Ar=10 A =100

So(1,A)/S1(L,A)  —1.34765 —-1.53002 —-2.21616 —-3.64171
S2(10,A)/S81(10, 1) —0.134842 —-0.14203 —0.145928 -0.146534
S52(20, A)/81(20, ) —0.067 1841 —0.068 8741 —0.069 3764 —0.069 4375
S2(30, 4)/51(30, 1) —0.0446691 —0.045 3304 —0.0454793 —0.0454962
S2(40, A)/81(40, ) —0.0334338 —0.0337615 —0.033 8243 —0.0338311

from equation (12) are nowhere near the actual values for the ground-state energy bf the
AHO except when the coupling is very small. As the coupling decreases, the optimal point
occurs at larger values fav and hence, the contributions frofa(N, 1) and S>(N, A) are
negligible. Thus, the contribution t&gw (N, 1) is determined primarily by the truncated
sum on the RHS of equation (12) for small coupling. However, if the valuevaoih
equation (12) were chosen to be much larger than at the optimal point, then we would find
that Egw (N, A) would also be affected b§;(N, A) and S2(N, A) as for the larger values
of A in table 6.

The results in table 6 show that asincreasesEgw (N, A) continues to diverge from
the actual ground-state energies of the AHO, contrary to BW’s hypothesis that the formula
yields more accurate values for the energy levely @screases. Our analysis has, therefore,
demonstrated that the BW formula is deficient, i.e. the leading- and first-order terms in
equation (2) cannot be used to obtain accurate values for the energy levels of the AHO in
the largen limit, especially for large values of the coupling.

In table 7 we evaluate the ratio 6§(N, 1) to S1(N, A) for the four values of coupling,
A =0.01, 0.1, 1.0 and 10.0 as a function 8f Here we see that foN = 1 S>(N, A) is
indeed much greater tha$i (N, 1), but for N > 1, the opposite applies, so much so that
for N = 40 the ratio ofS>(N, 1) to S1(V, 1) has decreased to 0.03 for all the values of
the coupling. Therefore, a& continues to increase, we expect that this correction term
will become increasingly small. Furthermore, from equations (1) and (2) the higher-order
correction terms in the BW formula are expected to go as

1 JV6& 1 . 95 by by
Em—é‘mgf("*é)(—?’“ (1_E+ﬁ+;ﬁ+"') (13)

where theb; have yet to be determined. SinSg(N, 1) corresponds to the 932x-term in
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equation (13), we expect the other terms to contribute even less Wherd0. Then the

only way that the BW formula can yield accurate values for the energy levels of the AHO is
that theb; must diverge eventually. This would mean that the BW formula is useless since
the higher-order series would be more important than the lower-order series. Therefore, the
b; cannot diverge.

Even if theb; could be evaluated, the BW formula may still be unable to yield accurate
values for the AHO’s energy levels. This is because subdominant exponential terms have
been neglected. Although it has been claimed that such terms cannot be determined uniquely
[9], they can be obtained by using the asymptotic theory of hypergeometric functions as
described in [2] and references therein. Thus, these terms would need to be determined
if one aims to obtain the exact values for the AHO ground-state energy via the Rayleigh—
Schibdinger perturbation series of Bender and Wu.

To conclude, we have seen that the numerical approximation of the coefficients at large
order as carried out by Bender and Wu in [1] will not yield exact values for the AHO'’s
ground-state energy even though the neglected higher-order series in the BW formula
become insignificant as the order increases. Studying the behaviour of an incomplete
Rayleigh—Schidinger perturbation series for increasingnly worsens the situation. Hence,

a more rigorous analysis of the asymptotic behaviour rather than the simple numerical
matching of ratios of thet; as carried out by Bender and Wu is required. Finally, since the
AHO represents a test-bed for novel methods in quantum mechanics, those that solely yield
the BW asymptotic formula for the energy levels must also be regarded as questionable.

We thank Dr Lloyd Hollenberg of the School of Physics, University of Melbourne, for
informative discussions and for access to his AHO computer code. VK also acknowledges
the support of an Australian Research Fellowship. Finally, we thank Professor Angas Hurst
of the Department of Physics and Mathematical Physics, University of Adelaide for a critical
reading of this work.
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